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Descriptive Statistics and data exploration
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Analysis and Interpretation

Understanding the data

descriptive statistics

Exploratory Data Analysis (EDA, e.g. boxglots, scatter plots)

Data preparation (if needed)
e Datatransformation (if needed)

e Hypothesis testing

e Resultsinterpretation



Descriptive Statistics

v

e Goal: get a feeling’ about how data is distributed

e Properties:
= Centraltendency (e.g. mean, median)

= Dispersion (e.g. frequency, standard deviation)

= Dependency (e.g., correlation)



Parameter vs. statistic

e Parameter: feature of the population
= u:mean

= (o:standard deviation

e Statistic: feature of the sample
= Z:mean

= s:standard deviation

e Statistics are an estimationof parameters



Central Tendency

1
e Arithmetic mean: r = — Zsz
n 1=1
n
e Geometric Mean: GM(SIZ) = 4 H X;
et

It is like the arithmetic mean, but with multiplication

- used when collected data is not "additive”, but “multiplicative”
Less sensible to outliers
Report it when the range of the considered values is very large




Central tendency
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e Median (or 50% percentile): middle value separating the

greater and lesser halves of a data set

T = T5qy

X=1[13,18,13,14, 13,16, 14,21, 13]

X...=[13,13, 13, 1314, 16,18, 21]



Central tendency
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e Mode: most frequent value in data set

X=[13,18,13, 14,13, 16,14, 21, 13]

Mo, =13



Central tendency - Skewness

Mean/ | \Mode Mean Mod}e \‘Mean

Median M,\,?géin Median
Negatively = Symmetric Positively

Skewed (Not Skewed) Skewed

Version 1.4




Dispersion

v
2 1 v 2
e \ariance: ST = 1 Z(aﬁz — :C)
1=1
Informally: it gives an idea about how "sparse” is
data
1 n
.. . _ 1 - )
e Standard D\ewahon. S = po—1 Z:l(zvz ZU)
1=

Informally: everything which is within 1 SD from
the mean is “normal”

e Standard Deviation is dimensionally equivalent to the data

0 VU¥



Dispersion - three-sigma-rule

v
99.7% of the data are within
€ 3 standard deviations of the mean >

95% within

2 standard deviations
68% within

<«— 1 standard —>
deviation

u— 30 u— 20 U—ac U u+o U+ 20 u+ 30

"Empirical Rule" by Dan Kernler - Own work. Licensed under CC BY-SA 4.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Empirical_Rule.PNG#/media/File:Empirical_Rule.PNG VU
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Dispersion - Range and Coefficient of variation

e Range: Lmazxr — Lmin

It is useful if you want to compare the dispersion
of variables with different units of measure

e (oefficient of variation:
(in percentage of mean) CV = 100%

e Coefficient of variation only has meaning if all values are
positive (ratioscale)

- VU



Dispersion - example

v
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e [Dataset: [100, 100, 100]

Mean: 100

Variance: O

Standard Deviation: O

Coeff. Variation: O

Range: O



Dispersion - example
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Dataset: [20, 100, 110]

Mean: 100

Sample Variance: 100

Standard Deviation: 10

Coeff. Variation: 10%

Range: 20



Dispersion - example
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e Dataset: |1, 5,6,8, 10,40, 65, 88]

Mean: 2/.8/5

Sample Variance: 1082.69

Standard Deviation: 32.9

Coeff. Variation: 1.18%

Range: 87/



Basic visualizations
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Box Plot
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Basic visualizations
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Box Plot
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Basic visualizations
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Box Plot °
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Dependency: correlation

v

e Meaningful when comparing paired values/datasets

e Sample correlation coefficient (Pearson):

2 i1 (T —T)(yi — Y)

(n —1)s.s,

Txy —

. VU¥



Dependency: example

20
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= 0O WwonkFO=F N B W B WODWOOM

Age vs. body fat %

e Pearson:r=0,/921

e Spearman: p =0./559

e Kendall: t=05/62




Basic Visualizations
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Scatter Plot
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Positive VS negative correlation
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't does NOT indicate the slope of the line

https://statistics.laerd.com/statistical-guides/pearson-correlation-

coefficient-statistical-guide.php
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Dependency: correlation

v

e Pearson correlation coefficient assumes normally distributed
data

e Spearman’s rank correlation coefficient: p

e non-parametric alternative
e alsogood forordinal data

e Kendall's rank correlation coefficient:
= smaller values T
= more accurate on small samples

y VU¥



Scatter plots for different coefficients

r = Pearson
ro = Spearman
r, = skipped correlation

A Linear trend B Monotonic trend C One outlier
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Correlation does NOT imply causation!

Mozzarella cheese consumption

e Spurious Correlations: http://tylervigen.com/

Per capita consumption of mozzarella cheese
correlates with

Civil engineering doctorates awarded

Correlation: 95.86% (r=0.958648)
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http://tylervigen.com/

Data preparation

What if you have extreme values for a couple of runs during the experiment?

It depends on what is happening during those runs, check:

- if they make sense logically (e.g., in our EASE 2022 paper we had cpu usage going beyond
100%, and it helped us understanding that two treatments was using more than one core)

- ifthey all belong to the same treatments or subjects (they might indicate something
interesting!)

- if other metrics behave peculiarly (e.g., cpu and duration of the run)

NOTE: there are different schools of thought about how to treat outliers in measurement-based
experiments, such as:
- rerunning the runs
- keepingthedataasitis
- removing the outliers
- Example: https://ieeexplore.ieee.org/abstract/document/2830107

In your specific case, since the execution of a run does not cost a lot (thanks to automation), it is
strongly advised to redo the problematic runs


http://www.ivanomalavolta.com/files/papers/EASE_2022_AI.pdf
https://ieeexplore.ieee.org/abstract/document/9830107

What this lecture means to you?

e Now you know how to explore trends within your data

e Dbutyou still cannot say anything about your null hypotheses

e Youcanhave a feeling” about

e howdisperse-correlated is your data

e whatis “standard” in your data

e You can quickly visualize interesting trends

e boxplots

28 e scatterplots VU gxf
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